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0.

Abstrac t

A BIB design with b blocks is said to have the support

size b* when exactly b* of the b blocks are distinct.

BIB designs with b* < b hav e interesting applications in

design of experiments and finite population sampling as ex-

plained in detail in Foody and Hedayat (1977). A method

called “trade of 1” is introduced for the construction of

BIB designs . We apply this method and some techniques in

combinatorial topology to study BIB designs with arbitrary

v and k = 5 in general and with v = 7 and Ic = 3 in

particular. We determine the existence or nonexistence of

BIB designs with any given b and b* except the case when

= 16 for the family of BIB designs with V = 7 and

k = 3.

ev
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1.

1. Motivation. Suppose an experimenter wants to test and

evaluate v = 7 trea tments based on b blocks each of size
Ic = 3. According to the usual homoscedastic linear additive

model for measurements, the best possible design under any

reasonable statistical criterion is a balanced incomplete

block design (abbr. BIB design). This is a result due to

Kiefer ( 1958 , 1975) .  When b is not a multiple of 7, no

BIB design exists and therefore the existing literature is

not of much help to the experimenter. But if b is a mul—

• tiple of 7, the designs do exist. Thus label the treatments

as l,2,...,7. For b = 7, one example of BIB design is

1 2 1 t  5 6 1
2 5 5  6 7 2
3 k 6  7 1 3 .
k 5 7

If b = 7t, one can simply talce t copies of the above de-

sign. The resulting design consists of only seven distinct

blocks and is therefore said to have the support size 7.

There are BIB designs with different support sizes. For

example if b = 35, the collection of all ( )  = 35 possible

blocks of size 3 form a BIB design; and this design has

the support size 35. To the experimenter the implementation

of designs with different support sizes may cost different ly.

On the other hand certain mixtures of treatments may be more

preferrable than others. These considerations lead to the 

—~~~~~ •— —~~~~ — - - --— --. -- - -~~~~~ ——----—,.~~~~~~~~~ - . - -— —~~~
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2.

search for BIB designs with various support sizes. It is

then natural to ask the following question: For v = 7,

k = 3, b = 7t, and a given number b*, does there exist a

BIB design consisting of b* distinct blocks?

In our setting, we may require that b* satisfies the

obvious inequalities

b* � b  and

35 � b~ ~ 7.

As we shall see In Section 3, the answer to the above question

is basically yes with a few exceptional cases . The construc-

tion of designs or proof of nonexistence of designs heavily

relied on a method called “trade off”, which is introduced

and studied in the next section.

2. The Method of Trade Off.

Let V = (1 ,2,...,vJ . A 2—element subset of V will be

called a pair and a ic-element subset will be called a block

(later we will concentrate on the case Ic = 5) .  Let P de-

note the incidence matrix of pairs versus blocics. So P is

a (
~) by (

~) zero-one matrix . A (~)-dimensional column

vector F with non—negative Integer entries is called a

BIB design if

PF = Xi

for some positive integer X . An entry in F represents

the multiplicity (frequency) that the corresponding block



r 

-

~~ 3

appears in the design Such a design is also called a BIB

(v ,b,r,k,X)-design, where
r = X (v-l)/(k-1) and b = yr/k.

An Integer vector T of the same dimension is called a trade if

= o.
The sum of all positive entries in a trade is called its volume.

Let F be a BIB design. For every trade T, the vector F + T

is another design with the same parameters provided that all

of its entries are nonnegative . Conversely, any BIB design

sharing the same parameters with F can be written in the

form F + T for some trade T. In order to search for all

designs with the same parameters as F, it then suffices to

investigate the trades .

Hereafter unless specifically mentioned , we shall re-

stric t our attention to only the case Ic = 3. So a block

now means a triplet. The notation for the triplet consisting

of’ the elements x, y and z will be (xyz), while the order

among the 3 elements is not essential. Similarly, the typical

notation for a pair will be (xy), x e V and y € V.

Let E be the free Z-module generated by all the (
~

)
possible pairs and the free Z-module generated by all

the () possible triplets . The incidence matrix P in the

above may now be Interpreted as the boundary operator

~ : E3 E2,

which is the Z-homomorphism defined via

~ (xyz) (xy) + (xz) + (yz).
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4.

Under these notations , an element in represents a trade

if and only if it belongs to the Icernel of a.

Example 1. (125) + (146 ) + ( 2 5 4 )  + ( 5 5 6 )  — (124) — (156)

- (235 ) - (346) represents a trade . When this trade is

added to the design (124) + (137) +(156) + (235 ) + (267)

+ (346) + (457), we obtain another design (125) + (137)

+ (111.6) + (234) + (267) + (356) + (457). In other words ,

from the first design the four blocks (124), (156), (235),

and ( 546 ) have been traded for the blocks (125), (146),

(234), and ( 356) to obtain the second design.

Now we Introduce a geometric representation of the

trades . Given a trade T, construct a compact surface

without boundary as follows . First create two collections

of 2-simplexes (triangles) with their vertices labeled by

elements of V. The 2-simplexes in one collection will be

called the positive triangles and those In the other collec-

tion will be called the negative triangles. For every

term +(xyz) . in T, there corresponds a positive triangle

with vertices labeled by x, y, and z. If the coefficient

of (xyz) in T is m > 1, then there are m copies of

such a triangle . On the other hand, for every term -(xyz)

in T, there corresponds a negative triangle in the similar

manner. So every pair (xy) appears on the same number of

triangles in both collections . Thus, there exists a one-to—one

matching between the edges of positive triangles and the edges

of negative triangles so that every matched pair share the

_ _ _ _
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5.

same two labels . When we identify every matched pair of

edges in the natural way , we obtain a compact surface without

boundary . This is because a trade is equivalent to an element

in the Kernel of the boundary operator . We emphasize the possi-

ble nonuniqueness of the matching . Different matchings may

lead to different geometric configurations . Also the labels

on the vertices are not necessarily all distinct.

Example 2. The trad e in Example 1 is represented by the

diamond-shaped topological sphere

\
~~~ S 4/\

~~
/

~~~~~ 
I\y

\ \

Here in the picture  the shaded regions are the negativ e triangles .

In general, a trade gives rise to a compact surface that is

partitioned into p~ sitive triangles and negativ e triangles wi th  •

the following two properties .

( i )  Any two posit ive triangles can not in tersect  each other

except possibly at their vertices . Neither can any two

negative triangles .

( 2 )  The intersection of a positive triangle with a negative 

~~~~~~~~~~—•- -,.-. ,. •-.~~~~~—,- .- - •
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6.

triangle is vaccuin, or one vertex , or two vertices , or an

edge .

We shall refer to such a partition of surfaces , with or with-

out boundary , as an Eulerian triangulation, although it is not

quite a triangulation in the usual sense of algebraic topology .

The edges of the triangles form an Eulerian graph* on the sur-

face, i.e., a graph such that the valency of every vertex is

an even integer. Also no vertex can have just two valencies,

because then there would be two triangles sharing two common

edges .

The following example of trade is also obtained by tri-

angulating a sphere .

~~~ ‘I~-
.
~V~~’~ ~~~ ~~~~ 

- - 
~~~~~~~,<

~~~~~J’ ~~~~~s ____— , I

~~~ J ~~~~~~~
/

I ~~ ..

This figure represents the trade (134) + (156) + (178)

+ (238) + (245) + (267) (138) — ( 145 ) — (167) — (234) — (256)
- ( 278) . Again the shaded regions are the negative triangles .

* A more precise terminology would be Eulerian multigraph than

Eulerian graph according to Harary (1969).

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -
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it is well-known that a compact connected surface is

e~ther a sphere , or a connected sum of tori, or a connected

sum of projective planes (see, for example, Theorem 5.1 in

Massey (1967)). The standard presentation of the connected

sum of n tori is by identifying edges of a kn-gon in pairs .

a1
I3
~ 

~~~~~~~~~~~~~~~~~~~~

~‘ 

f~i
/a 2

2

Similarly for the connected sum of n projective planes we

have the following figure.

a~ 
\

~~~~~~~~~~~~~~~~Ja2

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



8.

Using these standard presentation of surfaces, we can

easily construct more trades .

Example ~~~.

Torus triangu1atio~~4~~~
_

~~~~~~~~~:4

Ii

Example ~ .

~~~
:Eve

Example 6.

~~~~~~~bott1e ’~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(iç ~~~~~~~~~ .

.5

_ _ _ _ _ _ _ _ _ _

~

•~
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9.

Note that the figures in Examples 4 and 6 represent the

same trade.

Example 7.

_ _ _ _  
3 -1

I ‘ I i  ~~~ —.
.— 

—

Torus Eulerian ~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~
. 4

triangulatior? jjjJ..—~ ~ J W ~~ f j L ~[ 
________________________ ~~~~f II ~~~

1
h h 1  

l i — .~~
i _1

~
L I! I I. lit ’

>~~• 7~. I
Example 8.

tr~~~~~~~~ion>

Recall that the volume of a trade (as a column vector)

means the total positive entry in the trade. We have the following:

Lemma 1. For a sufficiently large v, there exist trades of

~~~ volume other than 1, 2, 3, and 5.

Proof: In Examples 2, 4, 8, and 7, we have seen . trades of

volume 4, 6 , 7, and 9, respectively . On the other hand,

adding in copies of,. a trade of volume 4 to a trade of volume

Ic based on unrelated symbols yields a trade of volume km + Ic.

This observation together with the above examples proves the

lemma..

~ 

-~~~~~.-~~~~~~-—.—~~~~~--,- ,-—- .---- .—.•--- __
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10.

We have seen the convenience in constructing trades

from the concept of Eulerian triangulation. In the proof of

Lemma 5 below, we shall also find the same concept powerful

in showing negative results. First we state a couple of self—

evident lemmas .

Lemma 2. For every Eulerian triangulation of a compact sur-

face with boundary, the number of boundary . edges that are on

positive triangles differs from the number of those on nega-

tive triangles by a multiple of 3.

Lemma 3. There exist no trades of volume 1, 2 , or 3; therefore

the minimum trade volume is 4 .

Lemma k. If a disc is Eulerian triangulated with exactly 2

boundary edges, then

(i) exactly one boundary edge is on a positive triangle

and the other is on a negative triangle, and

(i i)  there are at leas t 4 positive and 4 negative

triangles.

Proof: Statement (i) follows directly from Lemma 2. From

this, we know the Eulerian triangulation represents a trade,

even though the surface has a boundary. The second statement

now follows from Lemma 5.

Lemma ~ . There exist no t rades of volume 5.
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11.

Proof: Assuming there exists an Eulerian triangulation of

certain compact surface without boundary by exactly 5 positive

and 5 negative triangles, we want to derive a contradiction .

First, we know that the triangulation on every connected

component of the surface represents a trade. So the surface

must be connected by Lemma 3. There are 10 triangles in total,

so there are 15 edges . Let n be the number of vertices.

The Euler characteristic of this surface is

= n - 15 + 10

= n - 5

< 2.

The inequality has been due to the connectedness. We label the

vertices by l,2,...,n, respectiv ely. There are three cases to

examine .

Case 1. X 2. Then n = 7 and the surface is a topological

sphere . The edges in the triangulation form a planar graph and

its valency sequence is

(6 , 4 , 4 , 4 , 4 , 4 , 4 , ) .

With a suitable relabeling, the neighborhood around the ver-

tex is as in either graph below .

_ _ _ _ _ _ _ _  or

—.‘•

~

, —__, .. _ —— . . _ _. _._ .—.-— ••-•--—— _________
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12.

In the first graph, the six arrows are supposed to be linked

in pairs to form a planar graph , but this is obviously im—
• pos sible . After  identifying the two point s labeled as 2 ,

the second graph lead to the following configuration.

5 t~~ 6

Again the arrows can not be linked in pairs to form a planar

graph .

Case 2. X = 1. Then n = 6 and the surface is a projective

plane . The valency sequenc e has to be one of the following

three :

(6 , 6 , 6, 4 , 4 , 4)

or (8 , 6 , 4, 4, 4 , 4)

or (10, 4 , 4, 4 , 4 , 4)

Since in any case some vertex has at least 6 valencies, we

may assume that there are two edges a and ~ joining be-

tween vertices 1 and 2. These two edges form a cycle. Since

the fundamental group of a projective plane is z/2z, this
cycle is either trivial or is the generator of the fundamental

group . .

--—

~

- .- •

~

,•—

~

-

~

• . - - -. - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-•
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First we assume that the cycle generates the fundamental

group. Then the projective plane can be drawn as a square

with edges identified in pairs as in below .

So we have an Eulerian triangulation of the square disc based

• on the following pic ture . j.

He re w , x, y, z € (3, Zt ,5, 6J and w 4 x , w 4 z , x 4 y, y 4 z.
Also from Lemma 4 , we have w 4 y and x 4 z. ~o w , x, y,

and z are all distinct. By symmetry, let w = 3, x = 4,

y = 5, and z = 6. Observe that vertex 1 must have more t han

6 va lenc ies and vertex 2 has at least 6. Therefore the

valency sequence is

(8 , 6 , 4 , 4 , 4 , 14 ),

and the arrows in the following graph should be linked in pairs

to form the triangulation.

— •-- •• .- ---- • --•- .- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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111 .

• Is obviously impossible.

~ uine that a and ~ form a trivial cycle .

Th3 ~~~~ ... -• . .
~~~ cuts the projective plane into two parts: a

disc and a Möbius band . From Lemma 14 the Eulerian triangu-

lation on the disc part takes at least 14 positive and 14 nega-

tive triangles . So the Möbius band is Eulerian triangulated

by at most 1 positive and 1 negative triangles. This is a

cont radiction .

Cas e 3. X = 0. Then n = 5. We need to show the nonexistence

of a trade T of volume 5 on 5 or less symbols . Firs t we

may assume that T is of the form

(123) — (1214) - (1314) — (23x ) + —
where x = 14 or 5. Then the coefficient of the block (1145)

in T must be at least 2. Thus

T = (123) + 2(1145) - (12 14) - (1314) - (23x )
— ( 1y5 ) - (lz5) — (uk5 ) — (v li.5 ) + — ...

But this implies that T has volume at leas t 7, a contra-

diction.

We conclude the above results in the following theorem

for later application.

_ . _
~~~~~~~~~~~i 1~~~i ~~~~~~~~~~~~~~~ - -~~- - . - ..~~~~~- •~ A
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THEOREM 1. For any Integer 1, there exists a trad e of

volume i if and only if i / 1, 2 , 3, or 5.

Remark: It is natural to generalize the concept of Eulerian

triangulation for higher dimensional manifolds. Then a

dimensional Eulerian triangulation represents a trade on the

so-called t-designs with Ic = t + 1. BIB designs are t-designs

when t = 2. Since only the 2-dimensional compact manifolds

have been completely classified, the analysis of higher di-

mensional Eulerian triangulations may be difficult .

3. An Application of the Method of Trade Of f :  BIB designs

with v = 7  and k = 3 .

All the designs in this section refer to

BIB (7, b ,r ,3 ,X)—des igns based on the set of symbols

(1 ,2 ,3, k ,5,6 , 7J .  From the relations rv = bk

and X(v—].) = r (k— 1),  one can see that b mus t be a multiple

of 7. Also, we have r = 3b/7 and X b/7. Thus there

are b blocks in the design; every symbol appears in exactly

r of them and every pair occurs in exactly X of them. We

want to determine the existence or nonexistence of designs

with any given b and b* ( the support s ize) .  The results

are summarized in Table 1.
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17.

From Table 1 the only unknown case is when b* = 16.

In all othe r cases we shall either exhibit examples of de-

signs with prescribed b and b* or prov e their nonexist-

ence.

Firs t , in order to cover all the (
~

) = 21 possible

pairs, at least 7 distinct blocks are needed in a design.

This means that b* � 7. In particular, It is known that

every design with b = b* = 7 is isomorphic to a finite

projectiv e plane of order 2.

Theorem 3.2 in van Lint and Ryser (1972) shows b* can

never be 8. Pesotchinsky ( 1977) showed b* 4 9, 10, 12.

When b = 35, there are no designs based on exact ly 30,

32, 33, or 314 distinct blocks. Because if there existed

such a design , its difference from the complete design would

be a trade of volume 5, 3, 2 , or 1, contrad icting Theorem

1 in the last section . 

_ .~~~~ ‘5 
-.5-’-- -‘-‘ 5 - ——-—. -... ---.‘ --..-- --.--—— -‘- —‘-  - “ 5  — - - -—-5—



18.

Next we treat the case when (b,b*) = (28 ,27) or ( 142 , 314 ).
We need the following lemma .

Lemma 6. Let F be a design with b = 114, and B1, B2,...,B8

be blocks. If F + (123) - B1— B 2 
- . . .  - B8 is a trade,

then B1 = (123) for some i.

Proof: Assuming that B1 4 (123) for all I, we shall derive

a cont radiction. The blocks B1, B2 , . . . ,B8 cover all the

21 possible pairs; the three pairs (12), (13) and (23) are

doubly covered, while all other pairs are singly covered.

By symmetry, we may assume that B1 = (12u), B2 (l2v),

B
3 = (13w), B14 = (13x), B5 = (23y) ,  and B6 = (23z). But the

above covering properties of the eight blocks imply that

u, v, w, x, y, z are distinct elements of the k—element set

(k,5,6,7J. This is a contradiction.

Proposition ].. (b,b*) 4 (28,27).

Proof: Suppose there exists a design F with b = 28 and

= 27. We may assume , by symmetry, that the unique doubled

block in the design is (123).- Let the 8 blocks that are

missing from the design be denoted as B1, B2 , .. . ,B8. Thus

B1 4 (123) for all I. Adding any design with 7 blocks to

F minus the complete design , we obtain a trade that is pro-

hibited by the above lemma. This contradiction originates from

the assumption of the existence of the design F.

-5 
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Proposition 2. (b,b*) 4 (42,514).

Proof: Suppose there exists a design with b = 142 and

= 314 . By symme t ry , we assume that this design is equal to

the complete design - (123) + B1 + B2 + . . . +  B8,

where B1, B2,...,B8 are blocks not equal to (123). The

proof now proceeds in the same way as in the proof of Proposi-

tion 1.

As a contrast against Lemma 6 , we have the following :

Example 9: Let S denote the sum

(1214) + (126) + (127) + (1314) + (135) + (137) + (156)

+ (2 514 ) + (235 ) + (256) + ( 25 7)  + (367) + ( 1456) + (1457)

+ (1467) - (125). If F is any design with 114 blocks, then

F - S is a trade. In fact , up to isomorphism, S is unique

subject to this property . On the other hand , the complete

design plus S is a design with b = 149 and b* = 514.

In Table 2 through Table 6, we provide examples of de-

signs with various b and b*. In these tables each column

specifies a BIB design. Each entry indicates the number of

copies of the corresponding block in the design.

5 - —
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Table 2
BIB Designs With v = 7 and Ic = 3

All Possible Support Sizes When b = 114

blocks’N5 7 8 9 10 11 12 13 14

123 — — — —1214 2 1 — 1
125 - — 1 —126 — — — 1
127 - 1 1 -
1314 - - - 1
135 2 - - 1
136 - 2 2 -
137 - — - —1145 - 1 1 —
1146 - - - -
1147 - — 1 -

156 - - - -
157 — 1 — 1
167 2 - - 1
2314 - 

~~~ ~~~ 
1 1 -

U) U) U) — — 1J~1 H H H H
236 - ~‘< - >4 - -
237 2 N N N 1 N 1

El El — El — -- 0 0 0 0
2146 - Z Z - 1 -

2147 - cr.~ - - 1
256 2 2 1 1
257 - - - -
267 - - - -
3145 - 1 1 -
3146 2 - - 1
3147 - - - -
356 - - - -
357 - 1 1 -
367 - - - 1
1l~56 - - - 1
1457 2 - - 1
1467 - 2 1 -
567 - - 1 — 

~~~~~~5-’•~~~• - 5 - 5 ”-. -• ”--5-5” •
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Table 6
BIB Designs With v = 7, Ic = 3, b = 142

and Support Sizes 30, 32, 33

b*

b1oc~~~ 50 32 33
123 1 1. 1
1214 1 1 1.
125 1 1 1
126 2 2 2
127 1 1 1
1311. 1 1 2
135 1 2 1
i~6 2 1 1
137 1 1 1
145 3 1 1
1146 — 2 1
1147 1 1 1
156 - — 1
157 1 2 2
167 2 1 1
2314 2 2 1
235 2 1 2
236 - - -
237 1 2 2
2145 — 1 1
2146 2 1 2
2147 1 1 1
256 1 2 1
257 2 1 1
267 1 1 1
3145 — 1 1
3146 1 1 1
321.7 2 1 1
356 2 2 2
357 1 - —
367 1 2 2
1456 2 1 1
1457 1 2 2
1467 1 1 1
567 1 1 1 
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With the designs in these tables and the one constructed

at the end of Example 9, we need only to observe the following

fact in order to establish all the existences claimed in Table 1.

Proposition 3. If there exists a design with b blocks

which contains a design with 7 blocks, then there exists

a design with b + 7 blocks and the same support size.

We now explain by an example the way the designs in the

above tables were obtained through the method of trade off.

Example 10. Let F denote the design

(127) + (1314) + (156) + (235) + (2146) + (367) + (1457) and

T the trade (127) + (156) + (236) + (357) - (126) — (157)

- (237) - (356). Then the complete design plus F minus T

is a design with 142 blocks . Since only the two blocks (236)

and (357) are missing from this design, the support size is

33. This is the design shown on the last column in Table 6.

Open Question: Does there exist any design with the support

size b* = 16 (while b can be any number)?

The authors conjecture the negative answer to this ques-

tion. The conjecture is based on the following, hopefully

plausible, argument . If there exist any designs with  b* = 16,

then very likely there exist such designs with b = 21.

It can be shown that a design with (b,b*) = (21,16) can not

contain a sub BIB design based on 7 blocks . However

computer search suggests that any design with b* <21 should 
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contain a sub BIB design based on 7 blocks . So the exist-

- once of designs with b* = 16 is doubtful. Incidentally,

whether the computer search has suggested a fact is another

open question.
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